
New to
text-based
interactive
game for
AI(LLM)
Author: Haonan Wang | Johns Hopkins University | Apr. 2025

Guidance: Prof.Ziang Xiao

Table of contents

Text-game and environment

Please everyone share your idea~LLMs reasoning, evaluation and so on……

01

04

02

previous work and future work

03

Introduction

DiscussionFor LLMs

My work

Introduction
Text Games: A Research Adventure!

01

Do you like playing these computer games?

AI(LLMs) is also worth a
Text-based Virtual Games

What Are Text Games? & Zork

Zork is a text adventure game first released
in 1977 ,by developers Tim Anderson, Marc
Blank, Bruce Daniels, and Dave Lebling for the
PDP-10 mainframe computer.

https://classicreload.com/play/zork-i.html

https://www.youtube.com/watch?v=PWQDccL0aXM

Text Games (or, Interactive Fiction, or
Text-based Virtual Environments) are
interactive virtual worlds that users observe and
act upon using words instead of pixels. They have
a long history, with many of the earliest games
(such as the Zork) being text-based games.

Not video games, we are Text games.!!!

https://en.wikipedia.org/wiki/Text_adventure_game
https://en.wikipedia.org/wiki/Tim_Anderson_(programmer)
https://en.wikipedia.org/wiki/Marc_Blank
https://en.wikipedia.org/wiki/Marc_Blank
https://en.wikipedia.org/wiki/Bruce_Daniels
https://en.wikipedia.org/wiki/Dave_Lebling
https://en.wikipedia.org/wiki/PDP-10
https://en.wikipedia.org/wiki/Mainframe_computer
https://classicreload.com/play/zork-i.html
https://www.youtube.com/watch?v=PWQDccL0aXM
https://en.wikipedia.org/wiki/Text-based_game
https://en.wikipedia.org/wiki/Interactive_fiction
https://aareed.itch.io/50-years-of-text-games
https://playclassic.games/games/adventure-dos-games-online/play-zork-great-underground-empire-online/play/

Text game & Researcher

In this 2022 paper, researchers find that: after years
of active research by our AI community, the best text
game agents are only able to solve about 12% of Zork,
even though it was authored in 1977.

 For AI researchers, Text Games (or Text-based
Virtual Environments) are an interesting text paradigm,
and in that their requirement for world knowledge and
complex multi-step reasoning to make AI system(like
LLMs, LLM for Agent, etc) to solve.

https://en.wikipedia.org/wiki/Zork
https://en.wikipedia.org/wiki/Text-based_game

Why we need Text game?
Text games allow researchers to test complex reasoning, memory, planning, and language

understanding — all without the less computational burden of 3D simulation.(They are lightweight,
reproducible, and easy to deploy — requiring only text, not physics engines or 3D rendering.)

✅ 2. Fully observable through text; no visual bias, Natural setting for reinforcement learning, LLMs learning..

✅ 3. Text games provide an ideal balance: rich cognitive tasks, yet low operational cost.

✅ 1. Combine language understanding, planning, memory, and reasoning.

You are in a dark cave. A torch lies here.

> take torch

You now have the torch.

> go north

> pick up sword

> talk to the wizard

In my view, believe that text-based environments have become a popular and important
intermediate step before tackling full future embodied or real-word virtual environment agents.

How need us to do for research?
In NLP and Game theory field, human make text-based game is typically divided into two areas :

● A. Interactive fiction environments: which are essentially popular games from the past (such as
Zork),

● B. Purpose-built research environments: that help teach or measure an agent’s ability to perform (for
example) specific kinds of common-sense or scientific reasoning.

These environments allow researchers to explore LLM agents' abilities in planning, generalization,
tool use, and interactive reasoning.

How need us to do for research?

In specifically, many research directions are possible with text games.

● Some focus on building new environments or simulators to test AI system (LLMs) ability.
● Creating virtual agents that can explore, observe, reason, and interact over time to study intelligent

behavior.
● 💰Although designing games takes effort, it's still much cheaper than building 2D or 3D worlds.

My work
Let’s get started! Bytesized32 text game~

02

Previous work & Bytesized 32

Code: https://github.com/isle-dev/BYTESIZED32-Refactored

Motivation:
● The ByteSized32 corpus offers 32 text

games designed for LLMs code
generation, exploring LLMs through
interactive world modeling. Each
game is written in Python and follows
a common structure with task-specific
rules and actions.

● To improve maintainability and future
extensibility, we refactored the entire
codebase to abstract shared
components, reduce redundancy, and
streamline logic across games.

● This modular redesign supports easier
experimentation, faster development.

Paper: https://arxiv.org/abs/2305.14879

https://github.com/isle-dev/BYTESIZED32-Refactored
https://arxiv.org/abs/2305.14879

Previous work & Difficulties

Code: https://github.com/isle-dev/BYTESIZED32-Refactored

❗Too much duplicated code
Each game redefined similar classes like TextGame and GameObject,
leading to redundancy and high maintenance effort.

Paper: https://arxiv.org/abs/2305.14879

 ❗Bloated if-else logic for action handling
Actions were handled with long if-elif chains, making the code hard to
read, extend, and debug.

❗Same meaning, different code

Some games use different names or code structures to do the same thing.
 Even though the logic is similar, it looks very different, so I had to read carefully to
understand it. Example:
 One game uses getAllObjects() and another uses collect_items() — but they mean the
same thing!

https://github.com/isle-dev/BYTESIZED32-Refactored
https://arxiv.org/abs/2305.14879

Previous work & Results

Code: https://github.com/isle-dev/BYTESIZED32-Refactored
Paper: https://arxiv.org/abs/2305.14879

2. Simplified Action Handling
→ Replaced messy if-elif chains with action_map dictionaries.
⚙ Result: Easier to add or change actions.

1. Modular Design
→ Extracted shared logic (e.g., GameObject.py, Text Game.py) into a reusable library.
📦 Result: Simplified game code, better reuse.

3. Motivation: We need Optimized Recursion
→ Used list comprehensions for recursive object handling.
🔁 Result: Cleaner and faster code.
4. Improved Descriptions
→ Unified how objects and containers are described.
🧾 Result: More readable and consistent output.

5. Centralized Execution
→ All games now use the same entry point and loop.
🚀 Result: Simplified testing and standardized execution.

✅ Outcome:
💡 1. Reduced code about half of old games lines
redundancy across 32 games
📦 2. Built a reusable library GameBasic.py
🎯 3. Enabled rapid prototyping and expanding of new
text-based games

https://github.com/isle-dev/BYTESIZED32-Refactored
https://arxiv.org/abs/2305.14879

Previous work & Results

Code: https://github.com/isle-dev/BYTESIZED32-Refactored

Paper: https://arxiv.org/abs/2305.14879
✅ Outcome:
💡 637—-----230(reduce lines of code every games)

https://github.com/isle-dev/BYTESIZED32-Refactored
https://arxiv.org/abs/2305.14879

And LLMs
A lot of my understanding and thinking with LLMs!

03

LLMs & Code generation
 💡Idea 1:How can LLMs generate our want own Text-based Games?

✅ :Through the process of Bytesized 32 text games project, we explore how
GPT-4 models can generate runnable, reasoning-oriented text games.

GPT-4

R1.Generate specific code for AI for
science in specific field?

R2.Understand the code structure?

LLMs & Code generation
R1.Generate specific code for AI for science in specific field?

https://arxiv.org/pdf/2406.06769

https://arxiv.org/pdf/2305.14879

https://arxiv.org/pdf/1806.11532

https://arxiv.org/pdf/2203.07540

✅ Background: Recent research (DiscoveryWorld, ScienceWorld,etc.), it include a
new future research direction to explore the LLMs generate multiple field to
simulate reasoning tasks in science and education.

💡 My thinking: Can we build a generalizable code structure for LLM-generated environments
across different domains like social conversation agent or engineering field ?
🔍My Hypothesis:

We may need a unified, modular code structure
 — a shared "skeleton" that LLMs can follow to generate environments
consistently across and adapt for more and more domains.

https://arxiv.org/pdf/2406.06769
https://arxiv.org/pdf/2305.14879
https://arxiv.org/pdf/1806.11532
https://arxiv.org/pdf/2203.07540

LLMs & Code generation
R2.Understand the code structure?

✅ Background: Recent research (Bytesized 32 ,etc.), it uses analogical prompt selection — pairing a target
game with a semantically or functionally similar game based on shared actions. This prompt design does not
rely on exact matches, but rather on functional or thematic similarity — helping LLMs generalize through
analogical (compare,etc.) generation.

Action.csv Distractor.csv Object.csv

LLMs & Code generation
R2.Understand the code structure?

In conclusion, we can define Bytesized 32 method named Compare Prompt Selection: Teaching by Similarity

💡 My thinking:
1.Can we provide better structured prompts design to guide LLMs?(Bytesized 32 has successful build GameBasic.py)

Key idea:
● Define a general skeleton for games: Environment, Task, Agent, etc.
● Provide examples that follow the same structure
● Help LLMs learn "how to build a game" in a modular, reusable way

2.Can we create an evaluation framework for code structure quality?
Key idea:

● Not just test if the code “runs,” but assess:
✅ Modularity ✅ Separation of concerns ✅ Reusability & clarity

● Inspired by software engineering principles + educational programming rubrics

In my conclusion, these two ideas aim to not only help LLMs generate better code, but also give us
a way to measure what "better" means, believe that combining structured prompts with structural
evaluation can push the development of code-based reasoning environments with LLMs.

LLMs & Reasoning
 Reasoning with LLMs

Chain of Thought Prompting Elicits Reasoning in Large Language Models (Wei et al. 2022)

LLMs & Reasoning
 For exploring the LLMs reasoning with Text-based games: “Two Perspectives”

Reasoning with Interactive language Reasoning with Evaluation

LLMs & Reasoning
Reasoning with Interactive language

 ✅ In my thinking, I hope Reasoning with Interactive Language means reasoning that happens during
a multi-step dialogue or instruction-following process in a dynamic text based game environment.

You are in a kitchen. There is a fridge, a table with apples and
bananas, and a drawer.

NPC says: “Someone is coming to take the red apple. You
better hide it.”

> Step 1: Find the red apple.

> Step 2: Think: Where would be a good place to hide it?

> Step 3: Action: Put the red apple inside the drawer.

 ✅Ability 1: Language understanding +
motive inference :The NPC didn’t give a direct
order — the model needs to understand the
implied intent to hide something.

 ✅Ability 2: Context modeling + environment
evaluation
→ The model must evaluate possible locations
(fridge, table, drawer) and choose the most suitable
one.
 ✅Ability 3: ✅ Planning + multi-step
action execution
 → The model needs to first find the object →
choose where to put it → and perform multiple
actions in sequence. How to test the LLMs for Human-like reasoning chain?

LLMs & Reasoning
Reasoning with Interactive language

 ✅ In my future work, reasoning with interactive language should go beyond parsing sentences.
It requires LLMs to simulate human-like reasoning — integrating motivation, dialogue history, and future planning.

 🧠 1. LLMs should learn not just “what to do,” but also “why to do it” in text based tasks.
🤝 2. Text-game action dialogue history and implied goals are essential to real reasoning.
🧩 3. Text games are a great testbed for this kind of cognitive emulation.

 ✅ how to identify the interactive language to create reasoning text-based game?

Formal reasoning:
the more the model needs to

follow strict rules, remember logic,
and avoid mistakes

Informal reasoning:
the more the model needs to

use experience, understand
context, and guess meaning from
unclear language.

1.Automated Theorem Proving 2.Code Generation、Regular Math 1.Commonsense Reasoning 2.Writing Assistance

 Goal: human-level reasoning!!!

LLMs & Reasoning
Reasoning with Evaluation

 ✅ In my thinking, I hope Reasoning with Evaluation in text games means use LLMs to generate the
text games benchmark, and also use LLMs or RL-agent to solve it.

 2.What are we trying to evaluate?
Check how well LLMs or agents can understand these games, and whether they can play them by

reasoning.

 1. What’s doing:

Use LLMs to generate text-games with natural language rules.

 3. What is my final goal?
To build a high-quality, automatically generated reasoning benchmark.

● How well LLMs or RL-trained agents can understand these natural language game descriptions?
● How effectively they can reason, act, and win within these environments?
● Whether LLMs can function as both game designers and agents?

Discussion

04

Please share your interesting idea!

Discussion & Question
I’ve shared how we can use LLMs to generate and explore text-based games.

Now I’d love to hear from you

Open Question 1: If you were a developer, what kind of text game would you design?
What’s the setting, the goal, the challenge?

Would it be realistic, imaginative, emotional, or social?

Open Question 2: What could this text game contribute to the AI community?
Could it reveal LLMs model weaknesses? AI Safety? AI reasoning? Build human-AI?

Open Question 3:What would you try to explore through this text game?

🎮 In the future of generative AI, games are more than play —
they are tools for thought, mirrors for intelligence, and windows into what we value.

