New to
text-based
interactive
game for
AI(LLM)

Guidance: Prof.Ziang Xiao

Table of contents

(o k | o2

Introduction My work

Text-game and environment previous work and future work

03 O4

For LLMs Discussion

LLMs reasoning, evaluation and so on...... Please everyone share your idea~

Ol

9 Text Games: A Research Adventure!

D

oy

Do you like playmg these computer games?

TGIATTE

MIHE ERAFY

CALL-DUTY \ o ik N {Gs b 'y > 3 (LT
MODERN R ‘"\ LEAGUE o e .4
WARFARE LEGENDC »

gEagnRius

~BLACK MYTH

WUKOMNG

(B

LLNIs) |s aiso worth a

What Are Text Games? & Zork

Text Games (or, Interactive Fiction, or
Text-based Virtual Environments) are
interactive virtual worlds that users observe and
act upon using words instead of pixels. They have
a long history, with many of the earliest games
(such as the Zork) being text-based games.

Zork s a text adventure game first released
in 1977 ,by developers Tim Anderson, Marc
Blank, Bruce Daniels, and Dave Lebling for the
PDP-10 mainframe computer.

¢\

1

»
M Not video games, we are Text games.!!!

9

West of House Score: 0 Moves: O

ZORK I: The Great Underground Empire

Copuyright (c) 1981, 1982, 1983 Infocom, Inc. All rights reserved.
Z0RK is a registered trademark of Infocom, Inc.

Revision 88 ~# Serial number 8407Z6

West of House

You are standing in an open field west of a white house, with a boarded fromt
door .

There is a small mailbox here.

L\

START| https://www.youtube.com/watch?v=PWQDccl.0aXM

@ https://classicreload.com/play/zork-i.html

—

https://en.wikipedia.org/wiki/Text_adventure_game
https://en.wikipedia.org/wiki/Tim_Anderson_(programmer)
https://en.wikipedia.org/wiki/Marc_Blank
https://en.wikipedia.org/wiki/Marc_Blank
https://en.wikipedia.org/wiki/Bruce_Daniels
https://en.wikipedia.org/wiki/Dave_Lebling
https://en.wikipedia.org/wiki/PDP-10
https://en.wikipedia.org/wiki/Mainframe_computer
https://classicreload.com/play/zork-i.html
https://www.youtube.com/watch?v=PWQDccL0aXM
https://en.wikipedia.org/wiki/Text-based_game
https://en.wikipedia.org/wiki/Interactive_fiction
https://aareed.itch.io/50-years-of-text-games
https://playclassic.games/games/adventure-dos-games-online/play-zork-great-underground-empire-online/play/

Text game 8 Researcher

For Al researchers, Text Games (or Text-based
Virtual Environments) are an interesting text paradigm,
and in that their requirement for world knowledge and
complex multi-step reasoning to make Al system(like
LLMs, LLM for Agent, etc) to solve.

) N D
. *5& \!‘\ \p & \8 \"}&
EONA A SR &
¥ & & & R ¥
Model F W 4 F K
DRRN (He et al., 2016b) 055 009 0.07 020 005 0.00
BYU-Agent (Fulda et al., 2017a) 059 003 000 010 000 0.01
Golovin (Kostka et al., 2017) 020 004 0.10 0.5 000 0.01
AE-DQN (Zahavy et al., 2018) 0.05 - - - -

NeuroAgent (Rajalingam and Samothrakis, 2019) 0.19 0.03 0.00 020 0.00 0.00

NAIL (Hausknecht et al., 2019) 038 003 026 - 0.00 0.00
CNN-DQN (Yin and May, 2019a) - 0.11 - - - -
IK-OMP (Tessler et al., 2019) - 1.00 - - - -
TDQN (Hausknecht et al., 2020) 047 003 000 034 002 0.00
KG-A2C (Ammanabrolu and Hausknecht, 2020) 0.58 0.10 0.01 0.06 0.03 0.01
SC (Jain et al., 2020) = 0.10 - - 0.0 -
CALM (N-gram) (Yao et al., 2020) 079 0.07 000 009 0.00 0.00
CALM (GPT-2) (Yao et al., 2020) 0.80 009 0.07 014 005 0.01
RC-DQN (Guo et al., 2020a) 081 0.11 040 020 005 0.02
MPRC-DQN (Guo et al., 2020a) 088 0.11 052 020 005 0.02
SHA-KG (Xu et al., 2020) 0.86 0.10 0.10 - 0.05 0.02
MC!Q*BERT (Ammanabrolu et al., 2020b) 092 0.12 - - 0.00 -
INV-DY (Yao et al., 2021) 081 012 006 0.11 005 -

Table 2: Agent performance on benchmark interactive fiction environments. All performance values are normalized to
maximum achievable scores in a given environment. Due to the lack of standard reporting practice, performance reflects values
reported for agents, but is unable to hold other elements (such as number of training epochs, number of testing epochs, reporting
average vs maximum performance) constant. Parentheses denote environment difficulty (E:Easy, M:Medium, H:Hard) as

A Systematic Survey of
Text Worlds as Embodied Natural Language Environments

Peter A. Jansen
University of Arizona, Tucson, AZ
pajansenfarizona.edu

Abstract

Text Worlds are virtual environments for em-
bodied agents that, unlike 2D or 3D environ-
ments, are rendered exclusively using textual
descriptions. These environments offer an al-
ternative to higher-fidelity 3D environments
due to their low barrier to entry, providing the
ability to study semantics, compositional infer-
ence, and other high-level tasks with rich action
spaces while controlling for perceptual input.
This systematic survey outlines recent devel-
opments in tooling, environments, and agent
modeling for Text Worlds, while examining
recent trends in knowledge graphs, common
sense reasoning, transfer learning of Text World
performance to higher-fidelity environments,
as well as near-term development targets that,
once achieved, make Text Worlds an attractive
general research paradigm for natural language
processing.

In this 2022 paper, researchers find that: after years

Zork

North of House
You are facing the north side of a white house. There is no door here, and all
the windows are barred.

>go north

Forest

‘This is a dimly lit forest, with large trees all around. One particularly large
tree with some low branches stands here.

>climb large tree

Upa Tree
You are about 10 feet above the ground nestled among some large branches.
On the branch is a small birds nest. In the bird’s nest is a large egg encrusted
with precious jewels, apparently scavenged somewhere by a childless songbird
>take egg

Taken.
>climb down tree

Forest
>go north

Table 1: An example Text World interactive fiction envi-
ronment, Zork (Lebling et al., 1979), frequently used as a
benchmark for agent performance. User-entered actions are
iralicized.

of active research by our Al community, the best text

game agents are only able to solve about 12% of Zork,

determined by the Jericho benchmark (Hausknecht et al., 2020).

even though it was authored in 1977.

https://en.wikipedia.org/wiki/Zork
https://en.wikipedia.org/wiki/Text-based_game

Why we need Text game?

@ Text games allow researchers to test complex reasoning, memory, planning, and language
understanding — all without the less computational burden of 3D simulation.(They are lightweight,
reproducible, and easy to deploy — requiring only text, not physics engines or 3D rendering.)

1. Combine language understanding, planning, memory, and reasoning.

2. Fully observable through text; no visual bias, Natural setting for reinforcement learning, LLMs learning..

3. Text games provide an ideal balance: rich cognitive tasks, yet low operational cost.

In myv view, believe that text-based environments have become a popular and important

intermediate step before tackling full future embodied or real-word virtual environment agents.

How need us to do for research?

@ In NLP and Game theory field, human make text-based game is typically divided into two areas :
e A. Interactive fiction environments: which are essentially popular games from the past (such as
Zork),
e B. Purpose-built research environments: that help teach or measure an agent’s ability to perform (for
example) specific kinds of common-sense or scientific reasoning.

Environment Description Institution Year
TextWorld Customizable generator of text games Microsoft 2018
Jericho Framework + 32 classic Infocom games Microsoft 2019
ScienceWorld Multi-hop QA + tasks in science lab Al2 2022
ByteSized32 32 structured text games for LLMs UNC 2024
PlayGround [LIGHT Social chat-based games Facebook Al 2019+

These environments allow researchers to explore LLM agents' abilities in planning, generalization,

tool use, and interactive reasoning.

&

Table of Contents

@ Simulators: Text-game Engines

@ Environments: Specific Interactive Games/Environments/Benchmarks

@ World Generation: Automatic World Generation

@ Agents: Agents/Agent Architectures

@ Data: Data/Resources

@ Position Papers

@ Shared Tasks

@ Social Agents: Agent-user or agent-agent dialog

O ;)\fhérg J
In specifically, many research directions are possible with text games.

Some focus on building new environments or simulators to test Al system (LLMs) ability.

e Creating virtual agents that can explore, observe, reason, and interact over time to study intelligent
behavior.

e § Although designing games takes effort, it's still much cheaper than building 2D or 3D worlds.

02
My work

Let's get started! Bytesized32 text game~

b

©

Previous work & Bytesized 32

. . i ’ ;
MOthﬂtlon: Task Description: Your task is to boil water. : % ByteSized32 Game 35| Task Specification

Observation: You find yourself in a kitchen. In the kitchen, you see: l

e The Byte S ized3 2 Corpus Offers 3 2 teXt ;D;stee"(hat is currently off and has nothing on it. @
2 a sink that is empty GPT-4
games designed for LLMs code kil -

an orange

. . o ocesbis s i -
generation, exploring LLMs through s il G Ak e ks B |

> take pot
The pot is removed from the kitchen. You put the pot in your

interactive world modeling. Each merior Ao Erakaton

> put pot in sink |

1 1 1 The pot is removed from the agent. The is placed in the sink. ! [| !
game IS ertten n Python and fOIIOWS 2 ""g'“:"“ i feseen P l Validity ~ Compliance ~ Winnability ~ Alignment
. . a sink that contains the following items:
a common structure Wlth taSk' SpeCIﬁC 5 bottat lenty Figure 1: An overview of our text game generation and
3 o evaluation process. The model, here GPT-4, generates a
rule S and actions. Ih:(:;‘l':": et Umed:on. game using in-context learning with a prompt consisting
. . . eqe a sink that contains the following items:
e To improve maintainability and future . pot hat looks 1 have some walern -
extensibility, we refactored the entire il = m—
The pot is removed from the sink.You put the pot in your inventory. Qigatsne L o
codebase to abstract shared s e .
The pot is rg;nov.ed from the agent. The pot is placed on the stove.) ol
components, reduce redundancy, and . =
Ih:::’tvl\:ils;:x turned on. o &) ade
Stl'eamlll’le 10glC aCI'O S S game S . a stove that is currently on and has the following items on it: g : E :u ::
apot Irfai 1?:? to have some water in it s 5 -
This modular redesign supports easier ot
(water boils| o o Ad
. . s &) A
experimentation, faster development. Seme compieted oon 5 o

Code: httDs://qithub.com/ni:smiwe-dev/Bd;?m%ESIZED32-Refam6tored
Paper: https://arxiv.org/abs/2305.14879

https://github.com/isle-dev/BYTESIZED32-Refactored
https://arxiv.org/abs/2305.14879

Previous work & Difficulties o

[]
\
| Too much duplicated code CS)D
Each game redefined similar classes like TextGame and GameObject, ‘
leading to redundancy and high maintenance effort. “‘

| Bloated if-else logic for action handling def cemoyeSeliErontontainan(

if seli.parentContainer. tx Nong:

Actions were handled with long if-elif chains, making the code hard to “parentContainer renoveohject LD
read, extend, and debug.

def getAllContainedObjectsRecursive(self):
Qutkist = [1
for obj in .contains:

| Same meaning, different code

outList.append(obj)

outList.extend(obj.getAllContainedObjectsRecursive())

Some games use different names or code structures to do the same thing. W

Even though the logic is similar, it looks very different, so I had to read carefully to

understand it. Example:
One game uses getAllObjects() and another uses collect_items() — but they mean the

thing!

Code: https://github.com/isle-dev/BYTESIZED32-Refactored
Paper: https://arxiv.org/abs/2305.14879

https://github.com/isle-dev/BYTESIZED32-Refactored
https://arxiv.org/abs/2305.14879

Previous work & Results

1. Modular Design
— Extracted shared logic (e.g., GameObject.py, Text Game.py) into a reusable library.
& Result: Simplified game code, better reuse.

2. Simplified Action Handling
— Replaced messy if-elif chains with action_map dictionaries.
J- Result: Easier to add or change actions.

3. Motivation: We need Optimized Recursion
"4 Outcome:

Reioli- Cloiner audtactor cote ¢ 1. Reduced code about half of old games lines

redundancy across 32 games

— Used list comprehensions for recursive object handling.

4. Improved Descriptions

— Unified how objects and containers are described. W e Caae B

Result: More readable and consistent output. @ 3. Enabled rapid prototyping and expanding of new

text-based games
5. Centralized Execution

— All games now use the same entry point and loop.
7 Result: Simplified testing and standardized execution.

Code: https://github.com/isle-dev/BYTESIZED32-Refactored
Paper: https://arxiv.org/abs/2305.14879

https://github.com/isle-dev/BYTESIZED32-Refactored
https://arxiv.org/abs/2305.14879

Previous work & Results

In our project structure, the old work(#) is the same as Bytesized32, and our new refactored games(*) work is also Overall Impact

Outcome:

loops

__hame__

main(BalanceG

incl ;
included Aspect Before Refactoring After Refactoring Improvement

. o Modularit Monolithic scripts Shared modules with Easier to manage, reuse, and

I:Y_TESIZED32—ma1n G y with duplicated logic reusable components extend functionalities.
data
i St lined with
| k= library Sabil Verbose and bR Improved clarity and reduced
| | L GameBasic.py # Core framework for game object abstractions(x) Readability repetitive logic comprenensionsand cognitive load for developers.
| }— playthroughs # Command files for running pre-defined scenarios(#) MeppIngs
| | programs # Original unrefactored game files(#) . ibili Hard to add new Game-specific logic New games or features require
| - refactored_programs # Final refactored versions of the game files(x) xtensibility features or games isolated in subclasses minimal effort to implement.
}— test_prompts # Prompt templates for testing game logic(#) . i
}— test_running # Scripts for automated game execution and these text games Explicit loops and Optimized recursive calls Improved efficiency for recursive
}— results # Generated experimental results and evaluation files(#) Estformance redundant operations and calculations eI s‘?‘e_dependem
. o) . . operations.

}— scripts # Utility scripts for experiment automation(#)
}— venv # Virtual environment for dependencies(#) AR i Repetitive if-elif B S Reduced boilerplate and easier
}— LICENSE # Project license(#) 9 structures t FEIng action management.
}— README.md # Project documentation (this file)(#) e
l— requirements.txt # Python dependencies(#) Testing and incrc’)nsist’ent maii Unified main execution Standardized testing and
L— setup.py # Project setup script(#) Execution function execution across all games.

Code: https://github.com/isle-dev/BYTESIZED32-Refactored
¢ 637—----230(reduce lines of code every gamePaper: https://arxiv.org/abs/2305.14879

https://github.com/isle-dev/BYTESIZED32-Refactored
https://arxiv.org/abs/2305.14879

03
AndLLMs

9 A lot of my understanding and thinking with LLMs! ::, Ay

TR
. © W

LLMs & Code generation

+ Idea 1:How can LLMs generate our want own Text-based Games?

:Through the process of Bytesized 32 text games project, we explore how

GPT-4 models can generate runnable, reasoning-oriented text games.

plished by providing the heavily-templated source
code of an existing text game as input, and tasking
models with adapting the template to a novel spec-
ification, as shown in Figure 1. The template pro-
vides a consistent, scalable, and general-purpose

for sludymg cmbodu:d agents, owing to their rel-
ative si to full 3D si i

and ability to model complex and abstract tasks
(Jansen, 2021; Li et al., 2021). While carly text
game research focused on testing agents on a small

code archi by y p
the simulation into object classes and sub-classes
(e.g. device and container), which can be instan-
tiated to make specific game objects (e.g. stove
and jug). The template also offers example imple-
mentations of common actions (e.g. activating
devices or opening containers) and scoring func-
tions that automatically detect task progress.
The contributions of this work are:

1. We present BYTES1ZED32, a corpus of 32 world

set of extant “i ive fiction” games like Zork,
recent approaches have leaned towards procedu-
rally generating a wider set of simple text-based
games in order to evaluate agents’ ability to gen-
eralize (C6té et al., 2018; Urbanek et al., 2019;
Shridhar et al., 2020; Wang et al., 2022). These
frameworks typically rely on hand-crafted rules
and templates programmatically arranged in novel
configurations, though some efforts leverage exter-
nal data sources (Barros et al., 2016) and generative
language models (Fan et al., 2019) as well. In con-

models (expressed as text games in PYTHON) cen-
tered around tasks that require common-sense rea-
soning. The corpus includes 20k lines of code

*ﬁ I (including detailed comments), and is suitable for,
models.

trast, in this work we require models to produce a
novel text game as a complete program, expressed
as PYTHON code, using only a single existing game

both in-context learning or producing fine-tuned
Code Generation: As large language modeld

enerate specific code for Al for Underctand the code oiructiie” T e

proposed to facilitate this research, covering a
wide range of programming languages and prob-
lem types (Yu et al., 2018; Lin et al., 2018; Austin

ence in specific field?

SCIENCEWORLD: Is your Agent Smarter than a S* Grader?

TextWork: A Learning Eavironment fo Tt based Gmes Ry g " ke ', i e ALEWOREDSATIGNING TEXT: ANDIEMBODIED et al., 2021; Chen et al., 2021). Contemporane-
" T — il ENVIRONMENTS ROR INTERACTIVE LEARNING ously, improvements in model architecture and

@ AppWorld: A Controllable World of Apps and People

Mohit Shridhar' Xingdi Yuan” Marc-Alexandre Coté” r B : " training have led to impressive gains in code gen-
YonatanBisk' Adam Trischler” Matthew Hausknecht® “Tor Benchmarking Interactive Coding Agents 8 s B 2

eration (Chen et al., 2021; Nijkamp et al., 2022;

i nieriyof Washingion > Microsoh Rescarch, Mol
Ty Camegie Mellon Univecsy T — Harsh Teived!! and Toshar Khot! and Marelke Hartmann® ot : Fri 4
d R b skin Manku' and Vinty Dong' and Edward Li' and Shashank Gupta® 3. We show ¥ ‘with a large input con- Li et al., 2022b; Fried et al, 2023), The GPT-
ALTwoz1d. github. 1 Ashish Sabharwal' and Niranjan Balasubramanian’ GPT-4, ci bl £ 4 language model (OpenAl, 2023), in particular,
ABSTRACT Stony Brook University ! Allen Insitte for Al “Saarland Universit Oy o Ploctice runable (oKt Bames 97 has sparked an interest in the use of prompting for
» y ity y unseen tasks in 28%|of cases using in-context learn- G x 5
2 > . code generation tasks, a technique which has led to
Ty, ad Abstract ing alone. When allpwed to self-reflect on its own

problem ition (Pourreza
and Rafiei, 2023) and self-debugging by reflect-
ing on errors (Chen et al., 2023; Olausson et al.,
2023). Despite these gains, however, existing code
generation benchmarks tend to require short and
4. We empirically d¢monstrate that while cur- relatively simple programs. In contrast, here mod-
rent best-generated games frequently include task- els must generate hundreds of lines of PYTHON
critical objects and aclions, they only accurately ~ code to generate complete and accurate task simu-

Har r myal my veydey 3 s @y ¢ £
nous agents that address day-io-day S L ICEE L P4
concreel. W sdess this iiation by intoducing ALFWorl,u simulator that asks (., ordering groceries for
) 119 must not only operate multiple
1. notes, messaging shopping spp) via

generated code combjined with PYTHON interpreter
errors that assess synlax issues or API compliance,
the model dramatically increases performance, gen-
erating runnable simulations in 57% of cases.

indhe ekt gl fom e ALFRED senchmrk (Shidhar et 3

rironment for
ted Scientific

flow in an terative manner bascd on
tion with the cnvironment. H
sting benchimarks for tool us are inad-

e e e
e
e & i ety

1 Introduction

plannin, nvigaion,and visual scene undertundng). cquence of AP cals

dy tis gap, we built AppWorld En-

| INtRoDUCTION —_— J_— ity accion envionment

P S —— < 8 57 Atk g i model the physical worlli in 51% of cases, while be- lations. Similarly, we show that self-reflection can
e R s unfamilar bous: when yout Tiend sks you I

ing winnable in only 38%; of cases. We pose thisas ~ substantially increase the mnnabnlny of even large
a challenge task to spur further p atthe model- d
juncture of world modeling and code generation.

2 Related Work

T e e e AppWorsd

o clean and shec an apie or n appetier,
e e vark (40K lnes of codo), a suie o1 750

o would you approseh the tak? Il
one couldreason sbtractly: (1) fnd an i

1‘:‘:‘\‘.‘;‘5‘:‘? T generation. It supports robust programatic 3 The BYTESIZED32 Corpus

To support the task of generating simulations in
the form of text games, we construct a corpus of
highly-templated text games written in PYTHON

;"

Text Games and Virtual Environments: Inter-
active text environments are an attractive choice

“This highlighis he benchmark's iffculty and
ApWord's poenil 0 psh s ronis of
o interactive coding agen

e o, 1 Introduction

Figure 1 A (shorened) day-o-day task rom AppWorld

teraction and API calls>

LLMs & Code generation

R1.Generate specific code for Al for science in specific field?

"4 Background: Recent research (DiscoveryWorld, ScienceWorld,etc.), it include a
new future research direction to explore the LLMs generate multiple field to
simulate reasoning tasks in science and education.

ScienceWorld / DiscoveryWorld &

Education focus (elementary science)

Scientific discovery (biology, physics...)

Agents act in grounded text environments LLMs generate environments + agents

Highlights the gap between QA and reasoning

Builds full cycle of scientific reasoning

XL

¢ My thinking: Can we build a generalizable code structure for LLM-generated environments
across different domains like social conversation agent or engineering field ?

C, My Hypothesis: https://arxiv.org/pdf/2406.06 769

https://arxiv.org/pdf/2305.14879

We may need a unified, modular code structure T : €1 11532
— a shared "skeleton" that LLMs can follow to generate environments iips.//arxiv.org/pdi/1806.1153

consistently across and adapt for more and more domains. https://arxiv.org/pdf/2203.07540

https://arxiv.org/pdf/2406.06769
https://arxiv.org/pdf/2305.14879
https://arxiv.org/pdf/1806.11532
https://arxiv.org/pdf/2203.07540

LLMs & Code generation

@Understand the code structure?

{74 Background: Recent research (Bytesized 32 ,etc.), it uses analogical prompt selection — pairing a target
game with a semantically or functionally similar game based on shared actions. This prompt design does not
rely on exact matches, but rather on functional or thematic similarity — helping LLMs generalize through

analogical (compare,etc.) generation.

make-ice-cubes.py,

forge-key.py,
take-photo.py,
cooking.py,
dishwasher.py,
conductivity.py,
dishwasher.py,
sunburn.py,
volume.py,
use-bandage.py,
use-bandage.py,
boil-water.py,
cooking.py,
cooking.py,
space-walk.py,
hang-painting.py,

A Action.csv

birdflifefcycle.py,

make-ice-cubes.py,
sunburn.py,
metal-detector.py,
make-ice-cubes.py,
scale-weigh.py,
refrigerate-food.py,
dishwasher.py,
cooking.py,
make-campfire.py,
sweep-floor.py,
volume.py,
multimeter.py,
balance-scale-weigh.py,
dishwasher.py,
plant-tree.py,

Distractor.csv

[target_gamel.py, [prompt_game].py

l‘efr*igel‘ateffood -PY,
volume-stone.py,
wash-clothes.py,
metal-detector.py,
bath-tub-water-temperature.py,
conductivity.py,
boil-water.py,

sunburn.py,

volume.py,

make-ice-cubes.py,
bath-tub-water-temperature.py,
dishwasher.py,

sunburn.py,

sweep-floor.py,

space-walk.py,

balance-scale-weigh.py,

Object.csv

LLMs & Code generation

Understand the code structure?
In conclusion, we can define Bytesized 32 method named Compare Prompt Selection: Teaching by Similarity

My thinking:
1.Can we provide better structured prompts design to guide LL.Ms?(Bytesized 32 has successful build GameBasic.py)
Key idea:

=

° Define a general skeleton for games: Environment, Task, Agent, etc.
e Provide examples that follow the same structure
e Help LLMs learn "how to build a game" in a modular, reusable way

= load_progran(pjoin(args.data

2.Can we create an evaluation framework for code structure quality?
Key idea:
e Not just test if the code “runs,” but assess:
("4 Modularity [/ Separation of concerns |4 Reusability & clarity
e Inspired by software engineering principles + educational programming rubrics

In my conclusion, these two ideas aim to not only help LL.Ms generate better code, but also give us

a way to measure what ""better' means, believe that combining structured prompts with structural
evaluation can push the development of code-based reasoning environments with LLMs.

LLMs & Reasoning

Reasoning with LLMs

How old was Donald Knuth when he wrote "The Art of
Computer Programming”? Please think step by step Input
about your answer.

Large Language Model Reasoning

“The Art of Computer Programming" was @
published in 1968. Donald Knuth was born in 1938. _ oo) ("/.;p;{') ("/};{'“\) a1 !
To determine his age when he wrote the book, we Chain of thought N Nl e N e
subtract his birth year from the publication year. L | J Ea u

aE - T

+ CIEIED

D eed

Y Majority vote

—t el ‘ i 1
a > d > o >
(_ Output Output (_ Output
EEy @& -
(a) Input-Output (c) Chain of Thought (c) Self Consistency
Prompting (IQ) Prompting (CoT) with CoT (CoT-SC)

4'\

Output

Donald Knuth was 30 years old when he wrote @
“The Art of Computer Programming."”

- =N
GE

(d) Tree of Thoughts (ToT)

Tree of Thoughts: Deliberate Problem Solving with Large Language Models (Yao et al. 2023)

Chain of Thought Prompting Elicits Reasoning in Large Language Models (Wei et al. 2022)

LLMs & Reasoning

For exploring the LLLMs reasoning with Text-based games: “Two Perspectives”

S & Y

Reasoning with Interactive language

-

Prrrm=>7T
- Y AT~

By

W R W

o] (o] E<
OOO0rw

Ct
[
E ¢

- Ty

Reasoning with Evaluation

LLMs & Reasoning

V4
A

O

‘Q Reasoning with Interactive language

v
A

O

In my thinking, I hope Reasoning with Interactive Language means reasoning that happens during
a multi-step dialogue or instruction-following process in a dynamic text based game environment.

(7 Ability 1: Language understanding +

motive inference :The NPC didn’t give a direct

order — the model needs to understand the
implied intent to hide something.

"4 Ability 2: Context modeling + environment
evaluation

— The model must evaluate possible locations
(fridge, table, drawer) and choose the most suitable

one.

/4 Ability 3: [Planning + multi-step
action execution

— The model needs to first find the object —
choose where to put it — and perform multiple

How to test the I.L1.Ms for Human-like reasoning chain? actions in sequence.

LLMs & Reasoning

! a Reasoning with Interactive language

O
A

O

‘V

7

{4 In my future work, reasoning with interactive language should go beyond parsing sentences.
It requires LLMs to simulate human-like reasoning — integrating motivation, dialogue history, and future planning.

“2 1. LLMs should learn not just “what to do,” but also “why to do it” in text based tasks.
v 2. Text-game action dialogue history and implied goals are essential to real reasoning.
% 3. Text games are a great testbed for this kind of cognitive emulation.

74 how to identify the interactive language to create reasoning text-based game?

1.Automated Theorem Proving 2.Code Generation. Regular Math 1.Commonsense Reasoning 2.Writing Assistance

< . ® O o 4

Informal reasoning:

Goal: human-level reasoning!!! the more the model needs to
use experience, understand
context, and guess meaning from
unclear language.

Formal reasoning:

the more the model needs to
follow strict rules, remember logic,
and avoid mistakes

A

LLMs & Reasoning

.] Reasoning with Evaluation
[=i

{4 In my thinking, I hope Reasoning with Evaluation in text games means use LLMs to generate the
text games benchmark, and also use LLMs or RL-agent to solve it.

1. What’s doing:

Use LLMs to generate text-games with natural language rules.

2.What are we trying to evaluate?
Check how well LLMs or agents can understand these games, and whether they can play them by

reasoning.

3. What is my final goal?
To build a high-quality, automatically generated reasoning benchmark.
e How well LLMs or RL-trained agents can understand these natural language game descriptions?
e How effectively they can reason, act, and win within these environments?
Whether LLMs can function as both game designers and agents?

04

Discussion

9 Please share your interesting idea!

D

Discussion & Question

I’ve shared how we can use LL.Ms to generate and explore text-based games.

Now I’d love to hear from you

Open Question 1: If you were a developer, what kind of text game would you design?
What’s the setting, the goal, the challenge?
Would it be realistic, imaginative, emotional, or social?

Open Question 2: What could this text game contribute to the Al community?

Could it reveal LLMs model weaknesses? Al Safety? Al reasoning? Build human-AI?

Open Question 3:What would you try to explore through this text game?

M In the future of generative Al, games are more than play —

they are tools for thought, mirrors for intelligence, and windows into what we value.

